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Motivation

Has been implemented in Agda

Has been used to study type theory within itself

This paper verifies consistency
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What is an inductive-inductive type?

An inductive type A : Set together with type indexed family B : A → Set

Inductive A : Set :=

| ..

mutual B : A -> Set :=

| ..
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Inductive-Inductive buildings

ground : Platform,

extension : ((p : Platform)× Building(p)) → Platform,

onTop : (p : Platform) → Building(p),

hangingUnder : ((p : Platform)× (b : Building(p))) → Building(extension(⟨p, b⟩))
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Simultaneous inductive to Inductive-Inductive

Simultaneous inductive

introA : ΦA(A,B) → A introB : ΦB(A,B) → B

Inductive-inductive

introA : ΦA(A,B) → A introB : (a : ΦB(A,B)) → B(iA,B(a))
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Strictly Positive

Remember from yesterday last week that we had

intro : Φ(A) → A

where the functor Φ was constructed as follows:

No premises: Φ(A) = 1

Non-inductive premise: Φ(A) = (x : K )×Ψx(A)

Inductive premise: Φ(A) = (K → A)×Ψ(A)
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Strictly Positive Operators

If we then move to defining two sets, we get

introA : ΦA(A,B) → A introB : ΦB(A,B) → B

No premises: Φ(A,B) = 1

Non-inductive premise: Φ(A,B) = (x : K )×Ψx(A,B)

Premise inductive in A: Φ(A,B) = (K → A)×Ψ(A,B)

Premise inductive in B: Φ(A,B) = (K → B)×Ψ(A,B)
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Strictly Positive Operators

Moving from a simultaneous inductive to an inductive-inductive defition

introA : ΦA(A,B) → A introB : (a : ΦB(A,B)) → B(iA,B)

No premises: Φ(A,B) = 1

Non-inductive premise: Φ(A,B) = (x : K )×Ψx(A,B)

Premise inductive in A: Φ(A,B) = (K → A)×Ψ(A,B) Premise inductive in
A: Φ(A,B) = (K → A)×Ψ(A,B) Premise inductive in A:
Φ(A,B) = (f : K → A)×Ψf (A,B)*

Premise inductive in B: Φ(A,B) = (K → B)×Ψ(A,B) Premise inductive in
B: Φ(A,B) = (K → B)×Ψ(A,B) Premise inductive in B:
Φ(A,B) = (f : ((x : K ) → B(iA,B(x))))×ΨF (A,B)∗

* : This Ψf is only allowed to depend on f : K → A for indices of B
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Axiomatisation using coding

SPA : Type SPB : Type

together with

ArgA ArgB
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SPA: Formation Rule

Aref : Set Bref : Set

SPA(Aref ,Bref ) : Type

Eventually, we only want to look at codes that don’t already have any elements:
SP’A := SPA(0, 0)
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SPA: Introduction Rules

nilA : SPA(Aref ,Bref )

K : Set γ : K → SPA(Aref ,Bref )

nonind(K , γ) : SPA(Aref ,Bref )

K : Set γ : SPA(Aref + K ,Bref )

A-ind(K , γ) : SPA(Aref ,Bref )

Representing a trivial
constructor

Representing a constructor with
a non-inductive argument

Representing a constructor with
an A-inductive argument
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SPA: Introduction Rules (cont)

K : Set hindex : K → Aref γ : SPA(Aref ,Bref + K )

B-ind(K , hindex , γ) : SPA(Aref ,Bref )

Representing a constructor with a B-inductive argument
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Example

If we look at the following constructor:

extension : ((p : Platform) × Building(p)) → Platform

Let’s rewrite it so that the rule will fit on the slide:

ext : ((p : A)) × B(p) → A

Then this rule would have following code:

γext = A-ind(1,B-ind(1, λ ∗ .p̂, nilA))

Where then γext : SP’A = SPA(0, 0), and p̂ = inr(∗) is the element representing
the ”induction hypothesis”
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ArgA: Formation Rule

Aref ,Bref : Set

γ : SPA(Aref ,Bref )
A : Set

B : A → Set

repA : Aref → A

repindex : Bref → A

repB : (x : Bref ) → B(repindex(x))

ArgA(Aref ,Bref , γ,A,B , repA, repindex, repB) : Set

14 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgA: Formation Rule

Aref ,Bref : Set

γ : SPA(Aref ,Bref )
A : Set

B : A → Set

repA : Aref → A

repindex : Bref → A

repB : (x : Bref ) → B(repindex(x))

ArgA(Aref ,Bref , γ,A,B , repA, repindex, repB) : Set

γ represents a constructor, which can make use of the elements represented by
codes in Aref and Bref
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ArgA: Formation Rule

Aref ,Bref : Set

γ : SPA(Aref ,Bref )
A : Set

B : A → Set

repA : Aref → A

repindex : Bref → A

repB : (x : Bref ) → B(repindex(x))

ArgA(Aref ,Bref , γ,A,B , repA, repindex, repB) : Set

Since A and B are yet to be defined, these input sets are allowed to be arbitrary
for now
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ArgA: Formation Rule

Aref ,Bref : Set

γ : SPA(Aref ,Bref )
A : Set

B : A → Set

repA : Aref → A

repindex : Bref → A

repB : (x : Bref ) → B(repindex(x))

ArgA(Aref ,Bref , γ,A,B , repA, repindex, repB) : Set

The various rep functions map elements to their real counterparts
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ArgA: Formation Rule

Aref ,Bref : Set

γ : SPA(Aref ,Bref )
A : Set

B : A → Set

repA : Aref → A

repindex : Bref → A

repB : (x : Bref ) → B(repindex(x))

ArgA(Aref ,Bref , γ,A,B , repA, repindex, repB) : Set

The code γ represents a constructor. ArgA gives the domain of that constructor.

18 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Another definition: Arg’A

We are mostly interested in the case where Aref = Bref = 0, in that case:

γ : SP’A

repA : 0 → A

repindex : 0 → A

repB : (x : 0) → B(repindex(x))

Since their types already determines our choices for these functions, we define:

Arg’A(γ,A,B) := ArgA(0, 0, γ,A,B , !A, !A, !B◦!A)
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ArgA

The code nilA represents a constructor with no argument, and as we saw earlier,
the domain for that constructor is 1

ArgA(Aref ,Bref , nilA,A,B , repA, repindex, repB) = 1

The code nonind(K , γ) represents a constructor with a non-inductive argument

ArgA(Aref ,Bref , nonind(K , γ),A,B, repA, repindex, repB) = (k : K )× ArgA(. . . , γ(k), . . . )
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ArgA

The code A-ind(K , γ) represents a constructor with an A-inductive argument

ArgA(Aref ,Bref ,A-ind(K , γ),A,B, repA, repindex, repB) = (j : K → A)× ArgA(. . . , γ(k), . . . )
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ArgA

And B-ind(K , hindex, γ) one with a B-inductive argument

ArgA(Aref ,Bref ,B-ind(K , hindex, γ),A,B , repA, repindex, repB) =

(j : (k : K ) → B((repA ◦ hindex)(k)))
× ArgA(. . . ,Bref + K , γ(k), . . . , repindex ⊔ (repA ◦ hindex), repB ⊔ j)
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Example

If we go back to our example from earlier with extension, it had the following
code:

γext = A-ind(1,B-ind(1, λ ∗ .p̂, nilA))

It would the following Arg’A:
Arg’A(γext ,Platform,Building) = (p : 1 → Platform)× 1 → Building(p(∗))× 1
Arg’A(γext ,Platform,Building) = (p : Platform)× Building(p)
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Motivation

We now have representations for (eventual) elements of A and B , and we
can reference those representations

We might want to reference a constructor of A as an index for B , but such
a constructor will need arguments

We need to represent an element of Arg’A(γ,A,B)

Intuitively, we might want to construct Arg’A(γ,Aref ,Bref ) and then use elements
from there as representations.
But: Aref and Bref are not quite of the right form yet
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The Idea

We will construct:

Aref : Set

Bref : Aref → Set

repA : Aref → A

repB : (x : Aref ) → Bref (x) → B(repA(x))

From these we will then get a function

lift′(repA, repA) : Arg’A(γ,Aref ,Bref ) → Arg’A(γ,A,B)
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Aref

Aref : Everything we need to represent A

Bref : Everything we need to represent B

So including elements a from A to serve as incices

Aref : Everything that actually represents an a in A

So including those elements from Bref

Aref := Aref + Bref .
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Bref

If ā from Aref represents a from A, then elements from Bref (ā) should
represent elements from B(a)

If ā is from Aref then it is either from Aref or from Bref

If it is from Aref then we don’t know any elements from B(a)

If it is from Bref then we know one element: repB(ā)

Bref := (λx .0) ⊔ (λx .1)
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repA

We define:

repA : Aref → A = (Aref + Bref ) → A

How to map those to the elements of A they represent we already know:

repA := repA ⊔ repindex
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repB

repb : (x : Aref ) → Bref (x) → B(repA(x))

If x comes from Aref then Bref (x) = 0 we have nothing to map, and we use
!A to construct a function of the right type

If x comes from Bref then Bref (x) = 1 and we need to map that element to
the one element we know exists

repb := (λx .!B◦!A) ⊔ (λx : ∗.repB(x))
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lift

If we have g : A → A∗ and g ′ : (x : A) → B(x) → B∗(g(x)) then we can also
construct:

lift′(g , g ′) : Arg’A(γ,A,B) → Arg’A(γ,A
∗,B∗)

We skip the proof for time reasons
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Using the lift function

We now give the following two definitions

argA(γ,Aref ,Bref ) := Arg’A(γ,Aref ,Bref )

lift(repA, repindex, repB) := lift′(repA, repB)

lift(repA, repindex, repB) : argA(γ,Aref ,Bref ) → Arg’A(γ,A,B)
lift(repA, repindex, repB) : Arg’A(γ,Aref ,Bref ) → Arg’A(γ,A,B)
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Representation for arguments

repA,1 := lift(repA, repindex, repB)

repA,1 : argA(γ,Aref ,Bref ) → Arg’A(γ,A,B)

We now have represenations for arguments to constructors
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Example

Let’s look at γext again:

extension : ((p : Platform)× Building(p)) → Platform

γext = A-ind(1,B-ind(1, λ ∗ .p̂, nilA))
and

Arg’A(γext ,Platform,Building) = (p : 1 → Platform)× 1 → Building(p(∗))× 1

Arg’A(γext ,Platform,Building) = (p : Platform)× Building(p)× 1

Also assume we have Aref = Bref = 0+ 1
Then Aref = Aref + Bref has two elements: p̂ = inl(inr(∗)) and p̂b = inr(inr(∗))
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Example

Bref (p̂) = 0

Bref (p̂b) = 1

⟨̂pb⟩ = ⟨p̂b, ∗, ∗⟩ is the only element in argA(γext ,Aref ,Bref )

repA,1(⟨̂pb⟩) = ⟨repindex(p̂b), repB(p̂b), ∗⟩ = ⟨p, b, ∗⟩
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Nested Constructors

Our arg fuction has given us the tools to go from a representation for A and B to
represenations of arguments of constructors
Now, we want to be able to nest those constructors as well
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Nested Constructors

Let’s say we have a sequence B⃗ref (n) = Bref ,0,Bref ,1, ...,Bref ,n−1. (Note that

B⃗ref (0) is just an empty sequence.)
We now define:

arg0A(γ,Aref , B⃗ref (0)) = Aref

argn+10A(γ,Aref , B⃗ref (n+1)) = argA(γ,
n

+
i=0

argiA(γ,Aref , B⃗ref (i)),Bref ,n)

argkA represents k nested constructors
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Looking at arg1A

arg1A(γ,Aref , B⃗ref (1)) = argA(γ, arg
0
A(γ,Aref , B⃗ref (0)),Bref ,0)

= arg0A(γ,Aref ,Bref ,0)
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In the ”real” world

Arg0A(γ,A, B⃗(0)) = A

Argn+1
A (γ,Aref , B⃗n+1) = Arg’A(γ,

n

+
i=0

ArgiA(γ,A, B⃗(i)),
n⊔

i=0

Bi)

Where B⃗(n) = B0,B1, ...,Bn−1, with Bi : Arg
i
A(γA,A, B⃗(i−1)) → Set
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repindex, i

If we now have the following:

repA : Aref → A

repindex, i : Bref ,i → ArgiA(γ,A, B⃗)

repB,i : (x : Bref ,i) → Bi(repindex, i(x))

Then we can construct:

repA, n : arg
n
A(γ,Aref , B⃗ref ) → ArgnA(γ,A, B⃗)

repA, 0 = repA
repA, n + 1 = lift(∥ni=0repA, i, inn ◦ repindex, n, repB, n)
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SPB

SPB Codes for constructors

ArgB Maps codes on types

IndexB assigns elements b : B(a) to their index a
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Formation rule for SPB

SPB is like SPA but two differences

We can refer to constructors of A (γA : SP ′
A and Bref, 0, . . .Bref, i)

We need an index for codomain of constructor
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Formation rule for SPB
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Formation rule for SPB
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Formation rule for SPB

44 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Introduction rules for SPB
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Introduction rules for SPB
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Introduction rules for SPB
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Introduction rules for SPB
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Introduction rules for SPB
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Introduction rules for SPB
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ArgB

nilb, nonind, A-ind are analogous to ArgA

nilB(aindex) → 1

nonind(K , γ) → (k : K )× recursive call

A-ind(K , γ) → (j : K → A)× recursive call
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ArgB

Bl -ind(K , hindex , γ) →
(j : (k : K ) → Bl((RepA,l ◦ hindex(k)))× recursive call
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The last missing piece is now IndexB
Again we do case distinction on the codes
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Formation rules

γA : SP’A γB : SP’B(γA)

AγA,γB : Set

γA : SP’A γB : SP’B(γA)

BγA,γB : AγA,γB → Set

All rules will have the premises γA : SP’A and γB : SP’B(γA), so from now on
we’ll leave them out
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Introduction rule for A

a : Arg’A(γA,AγA,γB ,BγA,γB )

introA(a) : AγA,γB
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Introduction Rule for B

b : Arg’B(γA,AγA,γB ,BγA,γB ,B1, ...,Bk)

introB(b) : BγA,γB (index(b))

We don’t have these yet!
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Bi ’s

We still need the various functions Bi : Arg
i
B(γA,AγA,γB ,BγA,γB ) → Set

We will need to define:

intron : Arg
n
A(γA,AγA,γB ,B0, ...,Bn−1) → AγA,γB

Bn : Arg
n
A(γA,AγA,γB ,B0, ...,Bn−1) → Set
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Bi ’s

intro0 = id

intron+1 = introA ◦ lift′(
n⊔

i=0

introi ,
n⊔

i=0

(λa.id))

Bi(x) = BγA,γB (introi(x))
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One more definition

index =

(
k⊔

i=0

introi

)
◦ Index′B(γA, γB ,AγA,γB ,B0, ...,Bk)
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Introduction Rule for B

b : Arg’B(γA,AγA,γB ,BγA,γB ,B1, ...,Bk)

introB(b) : BγA,γB (index(b))
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Questions?
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