Inductive Inductive Types

Thomas Posthuma, Pieter-Jan Lavaerts

Radboud University

12 December 2024

Motivation

Introduction

- Has been implemented in Agda
- Has been used to study type theory within itself
- This paper verifies consistency

Introduction

What is an inductive-inductive type?

An inductive type A : Set together with **type indexed family** $B : A \rightarrow Set$

```
Inductive A : Set :=
| ...
mutual B : A -> Set :=
| ...
```

Introduction

Inductive-Inductive buildings

ground: Platform,

extension : $((p : Platform) \times Building(p)) \rightarrow Platform,$

onTop : $(p : Platform) \rightarrow Building(p)$,

 $\mathsf{hangingUnder} : ((p : \mathsf{Platform}) \times (b : \mathsf{Building}(p))) \to \mathsf{Building}(\mathsf{extension}(\langle p, b \rangle))$

Fig. 1. onTop(p), extension($\langle p, b \rangle$) and hangingUnder($\langle p, b \rangle$).

Simultaneous inductive to Inductive-Inductive

Simultaneous inductive

$$\mathsf{intro}_A: \Phi_A(A,B) \to A \qquad \mathsf{intro}_B: \Phi_B(A,B) \to B$$

Inductive-inductive

$$\mathsf{intro}_A: \Phi_A(A,B) \to A \qquad \mathsf{intro}_B: (a:\Phi_B(A,B)) \to B(i_{A,B}(a))$$

Strictly Positive

Remember from yesterday last week that we had

intro :
$$\Phi(A) \rightarrow A$$

where the functor Φ was constructed as follows:

- No premises: $\Phi(A) = 1$
- Non-inductive premise: $\Phi(A) = (x : K) \times \Psi_x(A)$
- Inductive premise: $\Phi(A) = (K \to A) \times \Psi(A)$

Strictly Positive Operators

If we then move to defining two sets, we get

$$intro_A : \Phi_A(A, B) \to A$$
 $intro_B : \Phi_B(A, B) \to B$

- No premises: $\Phi(A, B) = \mathbf{1}$
- Non-inductive premise: $\Phi(A, B) = (x : K) \times \Psi_x(A, B)$
- Premise inductive in A: $\Phi(A, B) = (K \to A) \times \Psi(A, B)$
- Premise inductive in B: $\Phi(A, B) = (K \to B) \times \Psi(A, B)$

Strictly Positive Operators

Moving from a simultaneous inductive to an inductive-inductive defition

$$\mathsf{intro}_A: \Phi_A(A,B) \to A \qquad \mathsf{intro}_B: (a: \Phi_B(A,B)) \to B(i_{A,B})$$

- No premises: $\Phi(A, B) = \mathbf{1}$
- Non-inductive premise: $\Phi(A, B) = (x : K) \times \Psi_x(A, B)$
- Premise inductive in A: $\Phi(A, B) = (K \to A) \times \Psi(A, B)$ Premise inductive in A: $\Phi(A, B) = (K \to A) \times \Psi(A, B)$ Premise inductive in A: $\Phi(A, B) = (f : K \to A) \times \Psi_f(A, B)^*$
- Premise inductive in B: $\Phi(A, B) = (K \to B) \times \Psi(A, B)$ Premise inductive in B: $\Phi(A, B) = (K \to B) \times \Psi(A, B)$ Premise inductive in B: $\Phi(A, B) = (f : ((x : K) \to B(i_{A,B}(x)))) \times \Psi_F(A, B)*$
- * : This Ψ_f is only allowed to depend on $f: K \to A$ for indices of B

Axiomatisation using coding

 SP_{Δ} : Type SP_{B} : Type

together with

 Arg_{A} Arg_B

SP_A : Formation Rule

$$\frac{A_{ref}: Set}{SP_A(A_{ref}, B_{ref}): Type}$$

Eventually, we only want to look at codes that don't already have any elements: $SP'_A := SP_A(\mathbf{0}, \mathbf{0})$

SP_A : Introduction Rules

$$\mathsf{nil}_\mathsf{A} : \mathsf{SP}_\mathsf{A}(A_{ref}, B_{ref})$$

SP_A and Arg_A

$$\frac{\mathcal{K}:\mathsf{Set} \qquad \gamma:\mathcal{K}\to\mathsf{SP}_\mathsf{A}(A_{\mathit{ref}},B_{\mathit{ref}})}{\mathsf{nonind}(\mathcal{K},\gamma):\mathsf{SP}_\mathsf{A}(A_{\mathit{ref}},B_{\mathit{ref}})}$$

$$\frac{K : \mathsf{Set} \qquad \gamma : \mathsf{SP}_{\mathsf{A}}(A_{ref} + K, B_{ref})}{\mathsf{A}\text{-}\mathsf{ind}(K, \gamma) : \mathsf{SP}_{\mathsf{A}}(A_{ref}, B_{ref})}$$

Representing a trivial constructor

Representing a constructor with a non-inductive argument

Representing a constructor with an A-inductive argument

SP_A: Introduction Rules (cont)

$$\frac{K : \mathsf{Set} \quad h_{index} : K \to A_{ref} \quad \gamma : \mathsf{SP}_{\mathsf{A}}(A_{ref}, B_{ref} + K)}{\mathsf{B}\text{-}\mathsf{ind}(K, h_{index}, \gamma) : \mathsf{SP}_{\mathsf{A}}(A_{ref}, B_{ref})}$$

Representing a constructor with a B-inductive argument

Example

If we look at the following constructor:

extension :
$$((p : \mathsf{Platform}) \times \mathsf{Building}(p)) \to \mathsf{Platform}$$

Let's rewrite it so that the rule will fit on the slide:

$$\mathsf{ext} : ((p : \mathsf{A})) \times \mathsf{B}(p) \to \mathsf{A}$$

Then this rule would have following code:

$$\gamma_{\mathsf{ext}} = \mathsf{A} ext{-ind}(\mathbf{1}, \mathsf{B} ext{-ind}(\mathbf{1}, \lambda * .\hat{\pmb{p}}, \mathsf{nil}_{\mathsf{A}}))$$

Where then γ_{ext} : $SP'_A = SP_A(\mathbf{0}, \mathbf{0})$, and $\hat{p} = inr(*)$ is the element representing the "induction hypothesis"

Arg_A: Formation Rule

```
\begin{array}{c|c} \operatorname{rep}_{\mathsf{A}}: A_{\mathit{ref}} \to A \\ A_{\mathit{ref}}, B_{\mathit{ref}}: \mathsf{Set} & A: \mathsf{Set} & \operatorname{rep}_{\mathsf{index}}: B_{\mathit{ref}} \to A \\ \hline \gamma: \mathsf{SP}_{\mathsf{A}}(A_{\mathit{ref}}, B_{\mathit{ref}}) & B: A \to \mathsf{Set} & \operatorname{rep}_{\mathsf{B}}: (x: B_{\mathit{ref}}) \to B(\operatorname{rep}_{\mathsf{index}}(x)) \\ \hline A\mathsf{rg}_{\mathsf{A}}(A_{\mathit{ref}}, B_{\mathit{ref}}, \gamma, A, B, \operatorname{rep}_{\mathsf{A}}, \operatorname{rep}_{\mathsf{index}}, \operatorname{rep}_{\mathsf{B}}): \mathit{Set} \end{array}
```

Arg_A: Formation Rule

$$\mathsf{rep}_{\mathsf{A}} : A_{\mathsf{ref}} \to A$$

$$A_{\mathsf{ref}}, B_{\mathsf{ref}} : \mathsf{Set} \qquad A : \mathsf{Set} \qquad \mathsf{rep}_{\mathsf{index}} : B_{\mathsf{ref}} \to A$$

$$\underbrace{\gamma : \mathsf{SP}_{\mathsf{A}}(A_{\mathsf{ref}}, B_{\mathsf{ref}}) \quad B : A \to \mathsf{Set} \quad \mathsf{rep}_{\mathsf{B}} : (x : B_{\mathsf{ref}}) \to B(\mathsf{rep}_{\mathsf{index}}(x))}_{\mathsf{Arg}_{\mathsf{A}}(A_{\mathsf{ref}}, B_{\mathsf{ref}}, \gamma, A, B, \mathsf{rep}_{\mathsf{A}}, \mathsf{rep}_{\mathsf{index}}, \mathsf{rep}_{\mathsf{B}}) : Set}$$

 γ represents a constructor, which can make use of the elements represented by codes in A_{ref} and B_{ref}

$$\begin{array}{cccc} & \operatorname{rep}_{\mathsf{A}}: A_{ref} \to A \\ A_{ref}, B_{ref}: \mathsf{Set} & A: \mathsf{Set} & \operatorname{rep}_{\mathsf{index}}: B_{ref} \to A \\ \underline{\gamma: \mathsf{SP}_{\mathsf{A}}(A_{ref}, B_{ref})} & B: A \to \mathsf{Set} & \operatorname{rep}_{\mathsf{B}}: (x: B_{ref}) \to B(\operatorname{rep}_{\mathsf{index}}(x)) \\ \hline & A\operatorname{rg}_{\mathsf{A}}(A_{ref}, B_{ref}, \gamma, A, B, \operatorname{rep}_{\mathsf{A}}, \operatorname{rep}_{\mathsf{index}}, \operatorname{rep}_{\mathsf{B}}): Set \end{array}$$

Since A and B are yet to be defined, these input sets are allowed to be arbitrary for now

Arg_A: Formation Rule

The various rep functions map elements to their real counterparts

SP_A and Arg_A

Arg_∆: Formation Rule

$$\begin{array}{c|c} \operatorname{rep}_{\mathsf{A}}: A_{\mathit{ref}} \to A \\ A_{\mathit{ref}}, B_{\mathit{ref}}: \mathsf{Set} & A: \mathsf{Set} & \operatorname{rep}_{\mathsf{index}}: B_{\mathit{ref}} \to A \\ \hline \gamma: \mathsf{SP}_{\mathsf{A}}(A_{\mathit{ref}}, B_{\mathit{ref}}) & B: A \to \mathsf{Set} & \operatorname{rep}_{\mathsf{B}}: (x: B_{\mathit{ref}}) \to B(\operatorname{rep}_{\mathsf{index}}(x)) \\ \hline A\mathsf{rg}_{\mathsf{A}}(A_{\mathit{ref}}, B_{\mathit{ref}}, \gamma, A, B, \operatorname{rep}_{\mathsf{A}}, \operatorname{rep}_{\mathsf{index}}, \operatorname{rep}_{\mathsf{B}}): \mathit{Set} \end{array}$$

The code γ represents a constructor. Arg gives the domain of that constructor.

Another definition: Arg'_{Δ}

We are mostly interested in the case where $A_{ref} = B_{ref} = \mathbf{0}$, in that case:

 SP_A and Arg_A

- $\mathbf{P} = \gamma : \mathsf{SP'_A}$
- ightharpoonup rep_{Δ} : $\mathbf{0} \to A$
- \blacksquare rep_{index} : $\mathbf{0} \to A$
- \blacksquare rep_B: $(x:\mathbf{0}) \to B(\text{rep}_{index}(x))$

Since their types already determines our choices for these functions, we define:

$$\operatorname{Arg'}_{\mathsf{A}}(\gamma, A, B) := \operatorname{Arg}_{\mathsf{A}}(\mathbf{0}, \mathbf{0}, \gamma, A, B, !_A, !_A, !_{B \circ !_A})$$

Arg_A

The code nil_A represents a constructor with no argument, and as we saw earlier, the domain for that constructor is 1

$$Arg_A(A_{ref}, B_{ref}, nil_A, A, B, rep_A, rep_{index}, rep_B) = 1$$

The code $nonind(K, \gamma)$ represents a constructor with a non-inductive argument

$$\mathsf{Arg}_{\mathsf{A}}(A_{ref},B_{ref},\mathsf{nonind}(\mathcal{K},\gamma),A,B,\mathsf{rep}_{\mathsf{A}},\mathsf{rep}_{\mathsf{index}},\mathsf{rep}_{\mathsf{B}}) = (k:\mathcal{K}) \times \mathsf{Arg}_{\mathsf{A}}(\dots,\gamma(k),\dots)$$

Arg_A

The code A-ind(K, γ) represents a constructor with an A-inductive argument

$$\mathsf{Arg}_{\mathsf{A}}(A_{\mathit{ref}},B_{\mathit{ref}},\mathsf{A}\text{-}\mathsf{ind}(K,\gamma),A,B,\mathsf{rep}_{\mathsf{A}},\mathsf{rep}_{\mathsf{index}},\mathsf{rep}_{\mathsf{B}}) = (j:K\to A)\times\mathsf{Arg}_{\mathsf{A}}(\ldots,\gamma(k),\ldots)$$

Arg_A

And B-ind(K, h_{index} , γ) one with a B-inductive argument

$$\begin{split} \textit{ArgA}(\textit{A}_{\textit{ref}}, \textit{B}_{\textit{-}\textit{ind}}(\textit{K}, \textit{h}_{\textit{index}}, \gamma), \textit{A}, \textit{B}, \textit{rep}_{\textit{A}}, \textit{rep}_{\textit{index}}, \textit{rep}_{\textit{B}}) = \\ (\textit{j}: (\textit{k}: \textit{K}) \rightarrow \textit{B}((\textit{rep}_{\textit{A}} \circ \textit{h}_{\textit{index}})(\textit{k}))) \\ \times \textit{Arg}_{\textit{A}}(\dots, \textit{B}_{\textit{ref}} + \textit{K}, \gamma(\textit{k}), \dots, \textit{rep}_{\textit{index}} \sqcup (\textit{rep}_{\textit{A}} \circ \textit{h}_{\textit{index}}), \textit{rep}_{\textit{B}} \sqcup \textit{j}) \end{split}$$

Example

If we go back to our example from earlier with extension, it had the following code:

$$\gamma_{\mathsf{ext}} = \mathsf{A} ext{-ind}(\mathbf{1}, \mathsf{B} ext{-ind}(\mathbf{1}, \lambda * .\hat{\pmb{\rho}}, \mathsf{nil}_{\mathsf{A}}))$$

It would the following Arg' :

$$Arg'_A(\gamma_{ext}, Platform, Building) = (p : \mathbf{1} \rightarrow Platform) \times \mathbf{1} \rightarrow Building(p(*)) \times \mathbf{1}$$

 $Arg'_A(\gamma_{ext}, Platform, Building) = (p : Platform) \times Building(p)$

 $Arg'_{\Lambda}(\gamma_{ext}, Platform, Building) = (p : Platform) \times Building(p)$

 SP_A and Arg_A

- \blacksquare We now have representations for (eventual) elements of A and B, and we can reference those representations
- We might want to reference a constructor of A as an index for B, but such a constructor will need arguments
- We need to represent an element of $Arg'_{\Lambda}(\gamma, A, B)$

Intuitively, we might want to construct Arg' $_{\Delta}(\gamma, A_{ref}, B_{ref})$ and then use elements from there as representations.

But: A_{ref} and B_{ref} are not quite of the right form yet

The Idea

We will construct:

 \blacksquare $\overline{A_{ref}}$: Set

lacksquare $\overline{B_{ref}}:\overline{A_{ref}} o Set$

 $ightharpoonup \overline{\operatorname{rep}_{\mathsf{A}}}: \overline{A_{\mathit{ref}}} o A$

lacktriangledown $\overline{\operatorname{rep}}_{\mathsf{B}}: (x: \overline{A_{ref}}) o \overline{B_{ref}}(x) o B(\overline{\operatorname{rep}}_{\mathsf{A}}(x))$

From these we will then get a function

$$\mathsf{lift'}(\overline{\mathsf{rep}_\mathsf{A}},\overline{\mathsf{rep}_\mathsf{A}}):\mathsf{Arg'}_\mathsf{A}(\gamma,\overline{A_{\mathit{ref}}},\overline{B_{\mathit{ref}}})\to\mathsf{Arg'}_\mathsf{A}(\gamma,A,B)$$

A_{ref}

- \blacksquare A_{ref} : Everything we need to represent A
- \blacksquare B_{ref} : Everything we need to represent B
 - So including elements a from A to serve as incices
- \blacksquare $\overline{A_{ref}}$: Everything that actually represents an a in A
 - So including those elements from B_{ref}
- $\overline{A_{ref}} := A_{ref} + B_{ref}$.

B_{ref}

- If \bar{a} from $\overline{A_{ref}}$ represents a from A, then elements from $\overline{B_{ref}}(\bar{a})$ should represent elements from B(a)
- If \bar{a} is from $\overline{A_{ref}}$ then it is either from A_{ref} or from B_{ref}
- If it is from A_{ref} then we don't know any elements from B(a)
- If it is from B_{ref} then we know one element: $rep_B(\bar{a})$

We define:

$$lacktriangledown$$
 $\overline{\mathsf{rep}_\mathsf{A}}:\overline{A_{\mathit{ref}}} o A = (A_{\mathit{ref}} + B_{\mathit{ref}}) o A$

■ How to map those to the elements of *A* they represent we already know:

$$\blacksquare \ \overline{\text{rep}_{A}} := \text{rep}_{A} \sqcup \text{rep}_{\text{index}}$$

rep_B

- lacktriangledown $\overline{\operatorname{rep_b}}: (x: \overline{A_{ref}}) o \overline{B_{ref}}(x) o B(\overline{\operatorname{rep_A}}(x))$
- If x comes from A_{ref} then $\overline{B_{ref}}(x) = \mathbf{0}$ we have nothing to map, and we use $!_A$ to construct a function of the right type
- If x comes from B_{ref} then $\overline{B_{ref}}(x) = \mathbf{1}$ and we need to map that element to the one element we know exists
- $\overline{\mathsf{rep}_\mathsf{b}} := (\lambda x.!_{B \circ !_A}) \sqcup (\lambda x : *.\mathsf{rep}_\mathsf{B}(x))$

lift

If we have $g: A \to A^*$ and $g': (x:A) \to B(x) \to B^*(g(x))$ then we can also construct:

$$\mathsf{lift'}(g,g') : \mathsf{Arg'}_{\mathsf{A}}(\gamma,A,B) \to \mathsf{Arg'}_{\mathsf{A}}(\gamma,A^*,B^*)$$

We skip the proof for time reasons

Using the lift function

We now give the following two definitions

$$\quad \blacksquare \ \overline{\mathsf{lift}}(\mathsf{rep}_\mathsf{A}, \mathsf{rep}_\mathsf{index}, \mathsf{rep}_\mathsf{B}) := \mathsf{lift}'(\overline{\mathsf{rep}_\mathsf{A}}, \overline{\mathsf{rep}_\mathsf{B}})$$

$$\overline{\mathsf{lift}}(\mathsf{rep}_\mathsf{A},\mathsf{rep}_\mathsf{index},\mathsf{rep}_\mathsf{B}): \overline{\mathsf{arg}_\mathsf{A}}(\gamma,A_{\mathit{ref}},B_{\mathit{ref}}) \to \mathsf{Arg'}_\mathsf{A}(\gamma,A,B)$$

$$\blacksquare \overline{\mathsf{lift}}(\mathsf{rep}_\mathsf{A}, \mathsf{rep}_\mathsf{index}, \mathsf{rep}_\mathsf{B}) : \overline{\mathsf{Arg'}_\mathsf{A}}(\gamma, \overline{A_{\mathit{ref}}}, \overline{B_{\mathit{ref}}}) \to \mathsf{Arg'}_\mathsf{A}(\gamma, A, B)$$

Representation for arguments

- $Arr rep_{A,1} := \overline{lift}(rep_A, rep_{index}, rep_B)$
- \blacksquare rep_{A 1}: $\overline{arg_A}(\gamma, A_{ref}, B_{ref}) \rightarrow Arg'_A(\gamma, A, B)$
- We now have represenations for *arguments* to constructors

Example

Let's look at γ_{ext} again:

$$\mathsf{extension} : ((p : \mathsf{Platform}) \times \mathsf{Building}(p)) \to \mathsf{Platform}$$

$$\gamma_{\textit{ext}} = \mathsf{A}\text{-}\mathsf{ind}(\mathbf{1}, \mathsf{B}\text{-}\mathsf{ind}(\mathbf{1}, \lambda * .\hat{\pmb{p}}, \mathsf{nil}_{\mathsf{A}}))$$

and

$$\mathsf{Arg'}_\mathsf{A}(\gamma_\mathsf{ext},\mathsf{Platform},\mathsf{Building}) = (p:\mathbf{1} \to \mathsf{Platform}) \times \mathbf{1} \to \mathsf{Building}(p(*)) \times \mathbf{1}$$

$$\mathsf{Arg'}_\mathsf{A}(\gamma_{\mathsf{ext}},\mathsf{Platform},\mathsf{Building}) = (p:\mathsf{Platform}) imes \mathsf{Building}(p) imes \mathbf{1}$$

Also assume we have $A_{ref} = B_{ref} = \mathbf{0} + \mathbf{1}$

Then $A_{ref} = A_{ref} + B_{ref}$ has two elements: $\hat{p} = \text{inl(inr(*))}$ and $\hat{p}\hat{b} = \text{inr(inr(*))}$

Example

$$lacksquare \overline{B_{ref}}(\hat{
ho}) = \mathbf{0}$$

$$lacksquare \overline{B_{ref}}(\widehat{pb}) = \mathbf{1}$$

$$lack \langle \widehat{pb} \rangle = \langle \widehat{pb}, *, * \rangle$$
 is the only element in $\overline{\operatorname{arg}_A}(\gamma_{\operatorname{ext}}, A_{\operatorname{ref}}, B_{\operatorname{ref}})$

$$\qquad \mathsf{rep}_{A,1}(\widehat{\langle pb\rangle}) = \langle \mathsf{rep}_{\mathsf{index}}(\widehat{pb}), \mathsf{rep}_{\mathsf{B}}(\widehat{pb}), * \rangle = \langle p, b, * \rangle$$

Nested Constructors

Our arg fuction has given us the tools to go from a representation for A and B to representations of arguments of constructors

Now, we want to be able to nest those constructors as well

Nested Constructors

Let's say we have a sequence $\vec{B}_{ref,n} = B_{ref,0}, B_{ref,1}, ..., B_{ref,n-1}$. (Note that $\vec{B}_{ref(0)}$ is just an empty sequence.) We now define:

$$\operatorname{arg}_{A}^{0}(\gamma, A_{ref}, \vec{B}_{ref(0)}) = A_{ref}$$

$$\arg^{n+1} 0_A(\gamma, A_{ref}, \vec{B}_{ref(n+1)}) = \overline{\arg}_A(\gamma, \frac{n}{i=0} \arg_A^i(\gamma, A_{ref}, \vec{B}_{ref(i)}), B_{ref,n})$$

 arg_{Λ}^{k} represents k nested constructors

Looking at arg¹_A

$$\begin{split} \operatorname{arg}_{\mathsf{A}}^{1}(\gamma, A_{\mathit{ref}}, \vec{B}_{\mathit{ref}(1)}) &= \overline{\operatorname{arg}_{\mathsf{A}}}(\gamma, \operatorname{arg}_{\mathsf{A}}^{0}(\gamma, A_{\mathit{ref}}, \vec{B}_{\mathit{ref}(0)}), B_{\mathit{ref}, 0}) \\ &= \overline{\operatorname{arg}_{\mathsf{A}}^{0}}(\gamma, A_{\mathit{ref}}, B_{\mathit{ref}, 0}) \end{split}$$

In the "real" world

$$\mathsf{Arg}^0_\mathsf{A}(\gamma, A, \vec{\mathcal{B}}_{(0)}) = A$$

$$\operatorname{Arg}_{\mathsf{A}}^{n+1}(\gamma, A_{ref}, \vec{B}_{n+1}) = \operatorname{Arg'}_{\mathsf{A}}(\gamma, \bigoplus_{i=0}^{n} \operatorname{Arg}_{\mathsf{A}}^{i}(\gamma, A, \vec{B}_{(i)}), \bigsqcup_{i=0}^{n} B_{i})$$

Where $\vec{B}_{(n)} = B_0, B_1, ..., B_{n-1}$, with $B_i : \operatorname{Arg}_A^i(\gamma_A, A, \vec{B}_{(i-1)}) \to \operatorname{Set}$

rep_{index, i}

If we now have the following:

- \blacksquare rep_{Δ} : $A_{ref} \rightarrow A$
- \blacksquare rep_{index i}: $B_{ref,i} \to \text{Arg}_{A}^{i}(\gamma, A, \vec{B})$
- \blacksquare rep_{B i} : $(x : B_{ref i}) \rightarrow B_i(\text{rep}_{index i}(x))$

Then we can construct:

- \blacksquare rep_A : arg_Aⁿ $(\gamma, A_{ref}, \vec{B}_{ref}) \rightarrow Arg_A^n(\gamma, A, \vec{B})$
 - ightharpoonup rep_A $ho = \text{rep}_A$
 - \blacksquare rep_{A, n, +, 1} = $\overline{\text{lift}}(\|_{i=0}^n \text{rep}_{A, i}, \text{in}_n \circ \text{rep}_{\text{index}, n}, \text{rep}_{B, n})$

 SP_B

- *SP_B* Codes for constructors
- *Arg_B* Maps codes on types
- $Index_B$ assigns elements b: B(a) to their index a

Formation rule for SP_B

 SP_B is like SP_A but two differences

- We can refer to constructors of A $(\gamma_A : SP'_A \text{ and } B_{ref}, 0, \dots B_{ref}, i)$
- We need an index for codomain of constructor

Formation rule for SP_B

$$\frac{\gamma_A : \operatorname{SP}'_A \quad A_{\operatorname{ref}} : \operatorname{Set} \quad B_{\operatorname{ref}, 0}, B_{\operatorname{ref}, 1}, \dots, B_{\operatorname{ref}, k} : \operatorname{Set}}{\operatorname{SP}_B(\gamma_A, A_{\operatorname{ref}}, B_{\operatorname{ref}, 0}, B_{\operatorname{ref}, 1}, \dots, B_{\operatorname{ref}, k}) : \operatorname{Type}}$$

$$\frac{A_{\text{ref}} : \text{Set} \quad B_{\text{ref}} : \text{Set}}{\text{SP}_{A}(A_{\text{ref}}, B_{\text{ref}}) : \text{Type}}$$

$$\gamma_A : \operatorname{SP}'_A$$
 $A_{\operatorname{ref}} : \operatorname{Set} B_{\operatorname{ref}, 0} B_{\operatorname{ref}, 1}, \dots, B_{\operatorname{ref}, k} : \operatorname{Set} \operatorname{SP}_B(\gamma_A, A_{\operatorname{ref}}, B_{\operatorname{ref}, 0}, B_{\operatorname{ref}, 1}, \dots, B_{\operatorname{ref}, k}) : \operatorname{Type}$

Formation rule for SP_R

hangingUnder: $((p: Platform) \times (b: Building(p))) \rightarrow Building(extension((p,b))).$

$$\frac{\gamma_A : \operatorname{SP}'_A \quad A_{\operatorname{ref}} : \operatorname{Set} \quad B_{\operatorname{ref}, 0} \left(B_{\operatorname{ref}, 1}, \dots, B_{\operatorname{ref}, k} \right) : \operatorname{Set}}{\operatorname{SP}_B(\gamma_A, A_{\operatorname{ref}}, B_{\operatorname{ref}, 0}, B_{\operatorname{ref}, 1}, \dots, B_{\operatorname{ref}, k}) : \operatorname{Type}}$$

```
\mathrm{nil_B}(a_{\mathrm{index}})
```

 $\operatorname{nonind}(K, \gamma)$

A-ind (K, γ) :

 B_{ℓ} -ind (K, h_{index}, γ)

$$\frac{a_{\text{index}} : +_{i=0}^{k} \operatorname{arg}_{A}^{i}(\gamma_{A}, A_{\text{ref}}, \vec{B}_{\text{ref}})}{\operatorname{nil}_{B}(a_{\text{index}}) : \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})}$$

$$\frac{K : \operatorname{Set} \quad \gamma : K \to \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})}{\operatorname{nonind}(K, \gamma) : \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})}$$

$$\frac{K : \operatorname{Set} \quad \gamma : \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}} + K, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})}{\operatorname{A-ind}(K, \gamma) : \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})}$$

$$\frac{h_{\text{index}} : K \to \operatorname{arg}_{A}^{\ell}(\gamma_{A}, A_{\text{ref}}, \vec{B}_{\text{ref}})}{\operatorname{B-ind}(K, h_{\text{index}}, \gamma) : \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})}$$

$$\frac{K : \operatorname{Set} \quad \gamma : \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})}{\operatorname{B-ind}(K, h_{\text{index}}, \gamma) : \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})}$$

$\frac{a_{\mathrm{index}} : +_{i=0}^{k} \mathrm{arg}_{\mathrm{A}}^{i}(\gamma_{A}, A_{\mathrm{ref}}, \vec{B}_{\mathrm{ref}})}{\mathrm{nil}_{\mathrm{B}}(a_{\mathrm{index}}) : \mathrm{SP}_{\mathrm{B}}(\gamma_{A}, A_{\mathrm{ref}}, B_{\mathrm{ref}, 0}, \dots, B_{\mathrm{ref}, k})}$	$\overline{{\rm nil_A}: {\rm SP_A}(A_{\rm ref}, B_{\rm ref})}$
$\frac{K : \text{Set} \gamma : K \to \text{SP}_{\text{B}}(\gamma_A, A_{\text{ref}}, B_{\text{ref}, 0}, \dots, B_{\text{ref}, k})}{\text{nonind}(K, \gamma) : \text{SP}_{\text{B}}(\gamma_A, A_{\text{ref}}, B_{\text{ref}, 0}, \dots, B_{\text{ref}, k})}$	$\frac{K : \text{Set} \gamma : K \to \text{SP}_{\text{A}}(A_{\text{ref}}, B_{\text{ref}})}{\text{nonind}(K, \gamma) : \text{SP}_{\text{A}}(A_{\text{ref}}, B_{\text{ref}})}$
$\frac{K : \text{Set} \gamma : \text{SP}_{\text{B}}(\gamma_A, A_{\text{ref}} + K, B_{\text{ref}, 0}, \dots, B_{\text{ref}, k})}{\text{A-}\text{ind}(K, \gamma) : \text{SP}_{\text{B}}(\gamma_A, A_{\text{ref}}, B_{\text{ref}, 0}, \dots, B_{\text{ref}, k})}$	$\frac{K : \operatorname{Set} \gamma : \operatorname{SP}_{\operatorname{A}}(A_{\operatorname{ref}} + K, B_{\operatorname{ref}})}{\operatorname{A-ind}(K, \gamma) : \operatorname{SP}_{\operatorname{A}}(A_{\operatorname{ref}}, B_{\operatorname{ref}})}$
$\frac{h_{\text{index}} : K \to \arg^{\ell}_{\mathbf{A}}(\gamma_{A}, A_{\text{ref}}, \vec{B}_{\text{ref}})}{K : \text{Set} \gamma : \text{SP}_{\mathbf{B}}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, \ell} + K, \dots, B_{\text{ref}, k})}{\mathbf{B}_{\ell}\text{-}\text{ind}(K, h_{\text{index}}, \gamma) : \text{SP}_{\mathbf{B}}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})}$	$\frac{h_{\text{index}}: K \to A_{\text{ref}}}{\text{S-ind}(K, h_{\text{index}}, \gamma) : \text{SP}_{A}(A_{\text{ref}}, B_{\text{ref}} + K)}$

$$\frac{a_{\text{index}} : +_{i=0}^{k} \operatorname{arg}_{A}^{i}(\gamma_{A}, A_{\text{ref}}, \vec{B}_{\text{ref}})}{\operatorname{nil}_{B}(a_{\text{index}}) : \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})}$$

$$\overline{\mathrm{nil}_{\mathrm{A}}:\mathrm{SP}_{\mathrm{A}}(A_{\mathrm{ref}},B_{\mathrm{ref}})}$$

Introduction rules for SP_B

$$\frac{h_{\text{index}}: K \to \operatorname{arg}_{A}^{\ell}(\gamma_{A}, A_{\text{ref}}, \vec{B}_{\text{ref}})}{K: \operatorname{Set} \quad \gamma: \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, \ \ell} + K, \dots, B_{\text{ref}, \ k})}{B_{\ell}\text{-ind}(K, h_{\text{index}}, \gamma): \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, \ k})} \quad \frac{h_{\text{index}}: K \to A_{\text{ref}}}{Y: \operatorname{SP}_{A}(A_{\text{ref}}, B_{\text{ref}} + K)}$$

$$\frac{K: \operatorname{Set}}{B\text{-ind}(K, h_{\text{index}}, \gamma): \operatorname{SP}_{A}(A_{\text{ref}}, B_{\text{ref}} + K)}{Y: \operatorname{SP}_{A}(A_{\text{ref}}, B_{\text{ref}} + K)}$$

$$\frac{h_{\text{index}} : K - \operatorname{arg}_{A}^{\ell}(\gamma_{A}, A_{\text{ref}}, \vec{B}_{\text{ref}})}{K : \operatorname{Set} \quad \gamma : \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, \ell} + K, \dots, B_{\text{ref}, k})}{B_{\ell} - \operatorname{ind}(K, h_{\text{index}}, \gamma) : \operatorname{SP}_{B}(\gamma_{A}, A_{\text{ref}}, B_{\text{ref}}, 0, \dots, B_{\text{ref}, k})} \xrightarrow{K : \operatorname{Set}} \frac{h_{\text{index}} : K - A_{\text{ref}}}{\gamma : \operatorname{SP}_{A}(A_{\text{ref}}, B_{\text{ref}} + K)}$$

$$\frac{K : \operatorname{Set}}{B - \operatorname{ind}(K, h_{\text{index}}, \gamma) : \operatorname{SP}_{A}(A_{\text{ref}}, B_{\text{ref}} + K)}$$

Arg_{B}

 nil_{b} , nonind, A-ind are analogous to $\operatorname{Arg}_{\Delta}$

$$\mathsf{nil}_B(a_\mathsf{index}) o \mathbf{1}$$

 $\mathsf{nonind}(K, \gamma) o (k : K) imes \mathsf{recursive} \mathsf{call}$
 $\mathsf{A}\text{-}\mathsf{ind}(K, \gamma) o (j : K o A) imes \mathsf{recursive} \mathsf{call}$

Arg_B

$$\mathsf{B}_{\mathit{I}}\text{-}\mathsf{ind}(\mathcal{K},h_{\mathit{index}},\gamma) \to \\ (j:(k:\mathcal{K}) \to B_{\mathit{I}}((\mathit{Rep}_{\mathit{A},\mathit{I}} \circ h_{\mathit{index}}(k))) \times \text{ recursive call}$$

The last missing piece is now Index $_B$ Again we do case distinction on the codes

$$\operatorname{Index}_{\mathrm{B}}(\gamma_{A}, A_{\operatorname{ref}}, \vec{B}_{\operatorname{ref}}, \underline{\operatorname{nil}_{\mathrm{B}}(a_{\operatorname{index}})}, A, \vec{B}, \operatorname{rep}_{\mathrm{A}}, \operatorname{rep}_{\operatorname{index}}, \operatorname{rep}_{\mathrm{B}}, \star) = (\prod_{i=0}^{k} \operatorname{rep}_{\mathrm{A},i})(a_{\operatorname{index}})$$

$$\operatorname{Index_B}(\gamma_A, A_{\operatorname{ref}}, \vec{B}_{\operatorname{ref}}, \underline{\operatorname{nonind}}(K, \underline{\gamma}), A, \vec{B}, \operatorname{rep_A}, \operatorname{rep_{index}}, \operatorname{rep_B}, \underline{\langle k, y \rangle}) = \\ \operatorname{Index_B}(\underline{-}, \underline{-}, \underline{-}, \gamma(k), \underline{-}, \underline{-}, \underline{-}, \underline{-}, \underline{-}, y)$$

$$\operatorname{Index_B}(\gamma_A, A_{\operatorname{ref}}, \vec{B}_{\operatorname{ref}}, \underbrace{\operatorname{A-ind}(K, \gamma), A, \vec{B}, \operatorname{rep_A}, \operatorname{rep_{index}}, \operatorname{rep_B}, \langle j, y \rangle)}_{\operatorname{Index_B}(_, A_{\operatorname{ref}} + K, __, \gamma, __, -_, \operatorname{rep_A} \sqcup j, __, __, y)}$$

$$\operatorname{Index}_{B}(\gamma_{A}, A_{\operatorname{ref}}, \vec{B}_{\operatorname{ref}}, \underline{B}_{n}\operatorname{-ind}(K, h, \gamma), A, \vec{B}, \operatorname{rep}_{A}, \operatorname{rep}_{\operatorname{index}}, \operatorname{rep}_{B}, \langle j, y \rangle) = \operatorname{Index}_{B}(-, -, -, B_{\operatorname{ref}}, n + K, -, \gamma, -, -, -, -, \operatorname{rep}_{\operatorname{index}, n} \sqcup (\operatorname{rep}_{A, n} \circ h), -, -, -, -, \operatorname{rep}_{B, n} \sqcup j, -, y).$$

$$\frac{\gamma_A : \mathsf{SP'}_\mathsf{A} \qquad \gamma_B : \mathsf{SP'}_\mathsf{B}(\gamma_A)}{A_{\gamma_A,\gamma_B} : \mathsf{Set}}$$
 $\gamma_A : \mathsf{SP'}_\mathsf{A} \qquad \gamma_B : \mathsf{SP'}_\mathsf{B}(\gamma_A)$

$$\frac{\gamma_{A}: \mathsf{SP'}_{\mathsf{A}} \qquad \gamma_{B}: \mathsf{SP'}_{\mathsf{B}}(\gamma_{A})}{B_{\gamma_{A},\gamma_{B}}: A_{\gamma_{A},\gamma_{B}} \to \mathsf{Set}}$$

All rules will have the premises γ_A : SP'_A and γ_B : $SP'_B(\gamma_A)$, so from now on we'll leave them out

Introduction rule for A

$$\frac{a:\mathsf{Arg'}_\mathsf{A}(\gamma_\mathsf{A},A_{\gamma_\mathsf{A},\gamma_\mathsf{B}},B_{\gamma_\mathsf{A},\gamma_\mathsf{B}})}{\mathsf{intro}_\mathsf{A}(a):A_{\gamma_\mathsf{A},\gamma_\mathsf{B}}}$$

Introduction Rule for B

$$\frac{b: \mathsf{Arg'}_{\mathsf{B}}(\gamma_{\mathsf{A}}, A_{\gamma_{\mathsf{A}}, \gamma_{\mathsf{B}}}, B_{\gamma_{\mathsf{A}}, \gamma_{\mathsf{B}}}, B_{\mathsf{1}}, ..., B_{\mathsf{k}})}{\mathsf{intro}_{\mathsf{B}}(b): B_{\gamma_{\mathsf{A}}, \gamma_{\mathsf{B}}}(\overline{\mathsf{index}}(b))}$$

We don't have these yet!

B_i 's

We still need the various functions B_i : $Arg_R^i(\gamma_A, A_{\gamma_A, \gamma_B}, B_{\gamma_A, \gamma_B}) \to Set$ We will need to define.

$$\mathsf{intro}_n : \mathsf{Arg}^n_\mathsf{A}(\gamma_A, A_{\gamma_A, \gamma_B}, B_0, ..., B_{n-1}) \to A_{\gamma_A, \gamma_B} \\ B_n : \mathsf{Arg}^n_\mathsf{A}(\gamma_A, A_{\gamma_A, \gamma_B}, B_0, ..., B_{n-1}) \to \mathsf{Set}$$

$$\mathsf{intro}_0 = \mathsf{id}$$
 $\mathsf{intro}_{n+1} = \mathsf{intro}_A \circ \mathsf{lift'}(\bigsqcup_{i=0}^n \mathsf{intro}_i, \bigsqcup_{i=0}^n (\lambda a.id))$ $B_i(x) = B_{\gamma_A, \gamma_B}(\mathsf{intro}_i(x))$

One more definition

$$\overline{index} = \left(\bigsqcup_{i=0}^{k} \mathsf{intro}_{i}\right) \circ \mathsf{Index}_{B}'(\gamma_{A}, \gamma_{B}, A_{\gamma_{A}, \gamma_{B}}, B_{0}, ..., B_{k})$$

Introduction Rule for B

$$\frac{b : \mathsf{Arg'}_{\mathsf{B}}(\gamma_A, A_{\gamma_A, \gamma_B}, B_{\gamma_A, \gamma_B}, B_1, ..., B_k)}{\mathsf{intro}_{B}(b) : B_{\gamma_A, \gamma_B}(\overline{\mathsf{index}}(b))}$$

Questions?