
Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Inductive Inductive Types

Thomas Posthuma, Pieter-Jan Lavaerts

Radboud University

12 December 2024

1 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Motivation

Has been implemented in Agda

Has been used to study type theory within itself

This paper verifies consistency

2 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

What is an inductive-inductive type?

An inductive type A : Set together with type indexed family B : A → Set

Inductive A : Set :=

| ..

mutual B : A -> Set :=

| ..

3 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Inductive-Inductive buildings

ground : Platform,

extension : ((p : Platform)× Building(p)) → Platform,

onTop : (p : Platform) → Building(p),

hangingUnder : ((p : Platform)× (b : Building(p))) → Building(extension(⟨p, b⟩))

4 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Simultaneous inductive to Inductive-Inductive

Simultaneous inductive

introA : ΦA(A,B) → A introB : ΦB(A,B) → B

Inductive-inductive

introA : ΦA(A,B) → A introB : (a : ΦB(A,B)) → B(iA,B(a))

5 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Strictly Positive

Remember from yesterday last week that we had

intro : Φ(A) → A

where the functor Φ was constructed as follows:

No premises: Φ(A) = 1

Non-inductive premise: Φ(A) = (x : K )×Ψx(A)

Inductive premise: Φ(A) = (K → A)×Ψ(A)

6 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Strictly Positive Operators

If we then move to defining two sets, we get

introA : ΦA(A,B) → A introB : ΦB(A,B) → B

No premises: Φ(A,B) = 1

Non-inductive premise: Φ(A,B) = (x : K )×Ψx(A,B)

Premise inductive in A: Φ(A,B) = (K → A)×Ψ(A,B)

Premise inductive in B: Φ(A,B) = (K → B)×Ψ(A,B)

7 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Strictly Positive Operators

Moving from a simultaneous inductive to an inductive-inductive defition

introA : ΦA(A,B) → A introB : (a : ΦB(A,B)) → B(iA,B)

No premises: Φ(A,B) = 1

Non-inductive premise: Φ(A,B) = (x : K )×Ψx(A,B)

Premise inductive in A: Φ(A,B) = (K → A)×Ψ(A,B) Premise inductive in
A: Φ(A,B) = (K → A)×Ψ(A,B) Premise inductive in A:
Φ(A,B) = (f : K → A)×Ψf (A,B)*

Premise inductive in B: Φ(A,B) = (K → B)×Ψ(A,B) Premise inductive in
B: Φ(A,B) = (K → B)×Ψ(A,B) Premise inductive in B:
Φ(A,B) = (f : ((x : K ) → B(iA,B(x))))×ΨF (A,B)∗

* : This Ψf is only allowed to depend on f : K → A for indices of B
8 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Axiomatisation using coding

SPA : Type SPB : Type

together with

ArgA ArgB

9 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

SPA: Formation Rule

Aref : Set Bref : Set

SPA(Aref ,Bref ) : Type

Eventually, we only want to look at codes that don’t already have any elements:
SP’A := SPA(0, 0)

10 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

SPA: Introduction Rules

nilA : SPA(Aref ,Bref )

K : Set γ : K → SPA(Aref ,Bref )

nonind(K , γ) : SPA(Aref ,Bref )

K : Set γ : SPA(Aref + K ,Bref )

A-ind(K , γ) : SPA(Aref ,Bref )

Representing a trivial
constructor

Representing a constructor with
a non-inductive argument

Representing a constructor with
an A-inductive argument

11 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

SPA: Introduction Rules (cont)

K : Set hindex : K → Aref γ : SPA(Aref ,Bref + K )

B-ind(K , hindex , γ) : SPA(Aref ,Bref )

Representing a constructor with a B-inductive argument

12 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Example

If we look at the following constructor:

extension : ((p : Platform) × Building(p)) → Platform

Let’s rewrite it so that the rule will fit on the slide:

ext : ((p : A)) × B(p) → A

Then this rule would have following code:

γext = A-ind(1,B-ind(1, λ ∗ .p̂, nilA))

Where then γext : SP’A = SPA(0, 0), and p̂ = inr(∗) is the element representing
the ”induction hypothesis”

13 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgA: Formation Rule

Aref ,Bref : Set

γ : SPA(Aref ,Bref )
A : Set

B : A → Set

repA : Aref → A

repindex : Bref → A

repB : (x : Bref ) → B(repindex(x))

ArgA(Aref ,Bref , γ,A,B , repA, repindex, repB) : Set

14 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgA: Formation Rule

Aref ,Bref : Set

γ : SPA(Aref ,Bref )
A : Set

B : A → Set

repA : Aref → A

repindex : Bref → A

repB : (x : Bref ) → B(repindex(x))

ArgA(Aref ,Bref , γ,A,B , repA, repindex, repB) : Set

γ represents a constructor, which can make use of the elements represented by
codes in Aref and Bref

15 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgA: Formation Rule

Aref ,Bref : Set

γ : SPA(Aref ,Bref )
A : Set

B : A → Set

repA : Aref → A

repindex : Bref → A

repB : (x : Bref ) → B(repindex(x))

ArgA(Aref ,Bref , γ,A,B , repA, repindex, repB) : Set

Since A and B are yet to be defined, these input sets are allowed to be arbitrary
for now

16 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgA: Formation Rule

Aref ,Bref : Set

γ : SPA(Aref ,Bref )
A : Set

B : A → Set

repA : Aref → A

repindex : Bref → A

repB : (x : Bref ) → B(repindex(x))

ArgA(Aref ,Bref , γ,A,B , repA, repindex, repB) : Set

The various rep functions map elements to their real counterparts

17 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgA: Formation Rule

Aref ,Bref : Set

γ : SPA(Aref ,Bref )
A : Set

B : A → Set

repA : Aref → A

repindex : Bref → A

repB : (x : Bref ) → B(repindex(x))

ArgA(Aref ,Bref , γ,A,B , repA, repindex, repB) : Set

The code γ represents a constructor. ArgA gives the domain of that constructor.

18 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Another definition: Arg’A

We are mostly interested in the case where Aref = Bref = 0, in that case:

γ : SP’A

repA : 0 → A

repindex : 0 → A

repB : (x : 0) → B(repindex(x))

Since their types already determines our choices for these functions, we define:

Arg’A(γ,A,B) := ArgA(0, 0, γ,A,B , !A, !A, !B◦!A)

19 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgA

The code nilA represents a constructor with no argument, and as we saw earlier,
the domain for that constructor is 1

ArgA(Aref ,Bref , nilA,A,B , repA, repindex, repB) = 1

The code nonind(K , γ) represents a constructor with a non-inductive argument

ArgA(Aref ,Bref , nonind(K , γ),A,B, repA, repindex, repB) = (k : K )× ArgA(. . . , γ(k), . . . )

20 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgA

The code A-ind(K , γ) represents a constructor with an A-inductive argument

ArgA(Aref ,Bref ,A-ind(K , γ),A,B, repA, repindex, repB) = (j : K → A)× ArgA(. . . , γ(k), . . . )

21 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgA

And B-ind(K , hindex, γ) one with a B-inductive argument

ArgA(Aref ,Bref ,B-ind(K , hindex, γ),A,B , repA, repindex, repB) =

(j : (k : K ) → B((repA ◦ hindex)(k)))
× ArgA(. . . ,Bref + K , γ(k), . . . , repindex ⊔ (repA ◦ hindex), repB ⊔ j)

22 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Example

If we go back to our example from earlier with extension, it had the following
code:

γext = A-ind(1,B-ind(1, λ ∗ .p̂, nilA))

It would the following Arg’A:
Arg’A(γext ,Platform,Building) = (p : 1 → Platform)× 1 → Building(p(∗))× 1
Arg’A(γext ,Platform,Building) = (p : Platform)× Building(p)

23 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Motivation

We now have representations for (eventual) elements of A and B , and we
can reference those representations

We might want to reference a constructor of A as an index for B , but such
a constructor will need arguments

We need to represent an element of Arg’A(γ,A,B)

Intuitively, we might want to construct Arg’A(γ,Aref ,Bref ) and then use elements
from there as representations.
But: Aref and Bref are not quite of the right form yet

24 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

The Idea

We will construct:

Aref : Set

Bref : Aref → Set

repA : Aref → A

repB : (x : Aref ) → Bref (x) → B(repA(x))

From these we will then get a function

lift′(repA, repA) : Arg’A(γ,Aref ,Bref ) → Arg’A(γ,A,B)

25 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Aref

Aref : Everything we need to represent A

Bref : Everything we need to represent B

So including elements a from A to serve as incices

Aref : Everything that actually represents an a in A

So including those elements from Bref

Aref := Aref + Bref .

26 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Bref

If ā from Aref represents a from A, then elements from Bref (ā) should
represent elements from B(a)

If ā is from Aref then it is either from Aref or from Bref

If it is from Aref then we don’t know any elements from B(a)

If it is from Bref then we know one element: repB(ā)

Bref := (λx .0) ⊔ (λx .1)

27 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

repA

We define:

repA : Aref → A = (Aref + Bref ) → A

How to map those to the elements of A they represent we already know:

repA := repA ⊔ repindex

28 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

repB

repb : (x : Aref ) → Bref (x) → B(repA(x))

If x comes from Aref then Bref (x) = 0 we have nothing to map, and we use
!A to construct a function of the right type

If x comes from Bref then Bref (x) = 1 and we need to map that element to
the one element we know exists

repb := (λx .!B◦!A) ⊔ (λx : ∗.repB(x))

29 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

lift

If we have g : A → A∗ and g ′ : (x : A) → B(x) → B∗(g(x)) then we can also
construct:

lift′(g , g ′) : Arg’A(γ,A,B) → Arg’A(γ,A
∗,B∗)

We skip the proof for time reasons

30 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Using the lift function

We now give the following two definitions

argA(γ,Aref ,Bref ) := Arg’A(γ,Aref ,Bref )

lift(repA, repindex, repB) := lift′(repA, repB)

lift(repA, repindex, repB) : argA(γ,Aref ,Bref ) → Arg’A(γ,A,B)
lift(repA, repindex, repB) : Arg’A(γ,Aref ,Bref ) → Arg’A(γ,A,B)

31 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Representation for arguments

repA,1 := lift(repA, repindex, repB)

repA,1 : argA(γ,Aref ,Bref ) → Arg’A(γ,A,B)

We now have represenations for arguments to constructors

32 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Example

Let’s look at γext again:

extension : ((p : Platform)× Building(p)) → Platform

γext = A-ind(1,B-ind(1, λ ∗ .p̂, nilA))
and

Arg’A(γext ,Platform,Building) = (p : 1 → Platform)× 1 → Building(p(∗))× 1

Arg’A(γext ,Platform,Building) = (p : Platform)× Building(p)× 1

Also assume we have Aref = Bref = 0+ 1
Then Aref = Aref + Bref has two elements: p̂ = inl(inr(∗)) and p̂b = inr(inr(∗))

33 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Example

Bref (p̂) = 0

Bref (p̂b) = 1

⟨̂pb⟩ = ⟨p̂b, ∗, ∗⟩ is the only element in argA(γext ,Aref ,Bref )

repA,1(⟨̂pb⟩) = ⟨repindex(p̂b), repB(p̂b), ∗⟩ = ⟨p, b, ∗⟩

34 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Nested Constructors

Our arg fuction has given us the tools to go from a representation for A and B to
represenations of arguments of constructors
Now, we want to be able to nest those constructors as well

35 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Nested Constructors

Let’s say we have a sequence B⃗ref (n) = Bref ,0,Bref ,1, ...,Bref ,n−1. (Note that

B⃗ref (0) is just an empty sequence.)
We now define:

arg0A(γ,Aref , B⃗ref (0)) = Aref

argn+10A(γ,Aref , B⃗ref (n+1)) = argA(γ,
n

+
i=0

argiA(γ,Aref , B⃗ref (i)),Bref ,n)

argkA represents k nested constructors

36 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Looking at arg1A

arg1A(γ,Aref , B⃗ref (1)) = argA(γ, arg
0
A(γ,Aref , B⃗ref (0)),Bref ,0)

= arg0A(γ,Aref ,Bref ,0)

37 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

In the ”real” world

Arg0A(γ,A, B⃗(0)) = A

Argn+1
A (γ,Aref , B⃗n+1) = Arg’A(γ,

n

+
i=0

ArgiA(γ,A, B⃗(i)),
n⊔

i=0

Bi)

Where B⃗(n) = B0,B1, ...,Bn−1, with Bi : Arg
i
A(γA,A, B⃗(i−1)) → Set

38 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

repindex, i

If we now have the following:

repA : Aref → A

repindex, i : Bref ,i → ArgiA(γ,A, B⃗)

repB,i : (x : Bref ,i) → Bi(repindex, i(x))

Then we can construct:

repA, n : arg
n
A(γ,Aref , B⃗ref ) → ArgnA(γ,A, B⃗)

repA, 0 = repA
repA, n + 1 = lift(∥ni=0repA, i, inn ◦ repindex, n, repB, n)

39 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

SPB

SPB Codes for constructors

ArgB Maps codes on types

IndexB assigns elements b : B(a) to their index a

40 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Formation rule for SPB

SPB is like SPA but two differences

We can refer to constructors of A (γA : SP ′
A and Bref, 0, . . .Bref, i)

We need an index for codomain of constructor

41 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Formation rule for SPB

42 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Formation rule for SPB

43 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Formation rule for SPB

44 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Introduction rules for SPB

45 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Introduction rules for SPB

46 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Introduction rules for SPB

47 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Introduction rules for SPB

48 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Introduction rules for SPB

49 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Introduction rules for SPB

50 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgB

nilb, nonind, A-ind are analogous to ArgA

nilB(aindex) → 1

nonind(K , γ) → (k : K )× recursive call

A-ind(K , γ) → (j : K → A)× recursive call

51 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

ArgB

Bl -ind(K , hindex , γ) →
(j : (k : K ) → Bl((RepA,l ◦ hindex(k)))× recursive call

52 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

The last missing piece is now IndexB
Again we do case distinction on the codes

53 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

54 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

55 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

56 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

57 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Formation rules

γA : SP’A γB : SP’B(γA)

AγA,γB : Set

γA : SP’A γB : SP’B(γA)

BγA,γB : AγA,γB → Set

All rules will have the premises γA : SP’A and γB : SP’B(γA), so from now on
we’ll leave them out

58 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Introduction rule for A

a : Arg’A(γA,AγA,γB ,BγA,γB )

introA(a) : AγA,γB

59 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Introduction Rule for B

b : Arg’B(γA,AγA,γB ,BγA,γB ,B1, ...,Bk)

introB(b) : BγA,γB (index(b))

We don’t have these yet!

60 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Bi ’s

We still need the various functions Bi : Arg
i
B(γA,AγA,γB ,BγA,γB ) → Set

We will need to define:

intron : Arg
n
A(γA,AγA,γB ,B0, ...,Bn−1) → AγA,γB

Bn : Arg
n
A(γA,AγA,γB ,B0, ...,Bn−1) → Set

61 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Bi ’s

intro0 = id

intron+1 = introA ◦ lift′(
n⊔

i=0

introi ,
n⊔

i=0

(λa.id))

Bi(x) = BγA,γB (introi(x))

62 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

One more definition

index =

(
k⊔

i=0

introi

)
◦ Index′B(γA, γB ,AγA,γB ,B0, ...,Bk)

63 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Introduction Rule for B

b : Arg’B(γA,AγA,γB ,BγA,γB ,B1, ...,Bk)

introB(b) : BγA,γB (index(b))

64 / 65



Introduction Mutually Inductive SPA and ArgA Towards SP for B SPB and ArgB Rules

Questions?

65 / 65


	Introduction
	Mutually Inductive
	SP A and Arg A
	Towards SP for B
	SP B and Arg B
	Rules

